Tuning water reduction through controlled nanoconfinement within an organic liquid matrix
نویسندگان
چکیده
منابع مشابه
Phase transitions induced by nanoconfinement in liquid water.
We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 < or = d < or = 0.9 nm, a first order transition occurs between a bilayer liquid (BL) and a trilayer heterogeneous fluid (THF) as water density increases. The THF is characterized by...
متن کاملNanoconfinement-Induced Structures in Chiral Liquid Crystals
We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of ch...
متن کاملHydrophobic nanoconfinement suppresses fluctuations in supercooled water.
We perform very efficient Monte Carlo simulations to study the phase diagram of a water monolayer confined in a fixed disordered matrix of hydrophobic nanoparticles between two hydrophobic plates. We consider different hydrophobic nanoparticle concentrations c. We adopt a coarse-grained model of water that, for c = 0, displays a first-order liquid-liquid phase transition (LLPT) line with negati...
متن کاملAn ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models
Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...
متن کاملIrreversible structural change of a dry ionic liquid under nanoconfinement.
Studies of 1-hexyl-3-methyl-imidazolium ethylsulfate ([HMIM] EtSO4) using an extended surface forces apparatus show, for the first time, an ordered structure within the nanoconfined ionic liquid (IL) between mica surfaces that extends up to ∼60 nm from the surface. Our measurements show the growth of this ordered IL-film upon successive nanoconfinements-the structural changes being irreversible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Catalysis
سال: 2020
ISSN: 2520-1158
DOI: 10.1038/s41929-020-0482-5